https://ogma.newcastle.edu.au/vital/access/ /manager/Index en-au 5 Characterizing the mechanism of action of an ancient antimicrobial, Manuka honey, against Pseudomonas aeruginosa using modern transcriptomics https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:38597 Pseudomonas aeruginosa We show that no single component of honey can account for its total antimicrobial action, and that honey affects the expression of genes in the SOS response, oxidative damage, and quorum sensing. Manuka honey uniquely affects genes involved in the explosive cell lysis process and in maintaining the electron transport chain, causing protons to leak across membranes and collapsing the proton motive force, and it induces membrane depolarization and permeabilization in P. aeruginosa. These data indicate that the activity of manuka honey comes from multiple mechanisms of action that do not engender bacterial resistance. Importance: The threat of antimicrobial resistance to human health has prompted interest in complex, natural products with antimicrobial activity. Honey has been an effective topical wound treatment throughout history, predominantly due to its broad-spectrum antimicrobial activity. Unlike traditional antibiotics, honey-resistant bacteria have not been reported; however, honey remains underutilized in the clinic in part due to a lack of understanding of its mechanism of action. Here, we demonstrate that honey affects multiple processes in bacteria, and this is not explained by its major antibacterial components. Honey also uniquely affects bacterial membranes, and this can be exploited for combination therapy with antibiotics that are otherwise ineffective on their own. We argue that honey should be included as part of the current array of wound treatments due to its effective antibacterial activity that does not promote resistance in bacteria.]]> Tue 16 Nov 2021 15:46:30 AEDT ]]> The midcell replication factory in Bacillus subtilis is highly mobile: implications for coordinating chromosome replication with other cell cycle events https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:2488 Sat 24 Mar 2018 08:27:44 AEDT ]]> Essential biological processes of an emerging pathogen: DNA replication, transcription, and cell division in <i>Acinetobacter</i> spp https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:11224 Sat 24 Mar 2018 08:11:14 AEDT ]]> A simple plasmid-based system that allows rapid generation of tightly controlled gene expression in Staphylococcus aureus https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:17997 Sat 24 Mar 2018 07:56:34 AEDT ]]>